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COMPUTATIONAL HYPERSONICS AND PLASMADYNAMICS
Grant/Contract Number: 2307N617

Datta V. Gaitonde
Computational Sciences Branch, Air Vehicles Directorate

Air Force Research Laboratory, Wright-Patterson Air Force Base, OH

Abstract

Several independent efforts addressing simulation capability development and high-speed flow
control application were pursued by team members during the reporting period. Control of
laminar and turbulent shock/boundary layer and shock/shock interactions was explored with
active and passive techniques. Unsteady plasma actuators and laser-based volumetric heat
deposition were introduced in ramp and Edney interactions to mitigate integrated and local-
ized heat loads. Separately, porous walls were shown to reduce separation and enhance total
pressure recovery in three-dimensional viscous/inviscid interactions. A high-fidelity procedure
was developed to couple an unsteady first-principles plasma force model at kilohertz frequen-
cies to full Navier-Stokes solvers. The effect of dielectric barrier discharge-based body forces
on excitation of turbulence mechanisms in separated shear layers was investigated. Prelimi-
nary simulations were also performed to guide development of a test article for flight testing.
In the high-temperature regime, state-to-state kinetics simulations were employed to evaluate
vibrational bias in dissociation and recombination processes. Team members have continued
collaborations with academia within and outside the Summer Faculty and EOARD programs,
to continue joint studies on diverse problems including ablation, receptivity, plasma-excitation
of nozzle flows and conjugate heat transfer. Basic research transition has also been fostered
through active support and monitoring of several continuing and new SBIR/STTR and DARPA
efforts.

Objective

This task performs basic research in aeronautical sciences to support Air Force thrusts in
sustained hypersonic flight and access-to-space. The main objective is to develop and apply
advanced simulation methodologies to understand, predict and control phenomena which estab-
lish thermo-mechanical and propulsion related limitations at high-speeds. Particular emphasis
is placed on innovative approaches, both for simulation as well as control.

Accomplishments

Shock/shock and shock/boundary layer interactions interactions have a profound adverse im-
pact on various aspects of high speed flight, giving rise to separation, vortical structure forma-
tion, thermo-mechanical load peaks, loss of control authority of moving parts and flow distor-
tion. Several different types of techniques, both plasma-based and conventional, were examined
for control purposes in ramp and Edney interactions. As an example, elements of thethe flow
past a a Mach 14, 24o compression ramp at ReL = 1.04 × 105 The skin friction distribution,
shown in Figs. 1a and b illustrate the three-dimensional separated flow pattern present in the
vicinity of the corner. Plasma actuators were placed in the flow, upstream of the corner, and
modeled with steady and unsteady force and heating phenomenological models. Detailed re-
sults are presented in Refs. 5 and 6. Selected results for the effect of the heating-based control
cases are shown in Fig. 1c. The peak heat transfer rate downstream of reattachment is seen to
be reduced for both cases shown, with only moderate changes to the rest of the profile. The
mechanics behind the effectiveness of unsteady actuation was also examined. Sample results are
shown in Fig. 2 at phase angles of 0% and 60% for the case where a force vector field fluctuating
at a frequency of 25kHz is oriented outward and upstream. A region of hot, slow fluid, similar
in nature to a δ-scale structure in a turbulent boundary layer convects downstream, reducing
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Figure 1 Results of three-dimensional computations of 24◦ ramp flow.
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Figure 2 Effect of unsteady actuation. Ch=heat transfer coefficient, T=temperature

the heat transfer rate on its centerline, but at the expense of local hot spots to either side.
Analysis of the integrated heat transfer rates indicate that although significant local decreases
in heat transfer occur with control, the net heat load remains nearly the same. A counter-
rotating, streamwise vortex pair is observed: these reduce peak heat transfer rate by insulating
the wall in the reattachment zone.

Passive control with porous walls, enforcing net zero instantaneous mass flux, was also
explored for shock/boundary control in both laminar and 3-D turbulent interactions (details
may be found in Ref. 12). A sophisticated porous-wall model was adapted to eliminate the
need for a separate computational domain in the plenum. Validation studies, presented in
Figure 3 for a standing normal shock/boundary layer interaction (SBLI), without and with a
5% porous wall extending the length of the separated region, are clearly excellent. The results
indicate that the height of the λ rises due to the disturbance generated by fluid injection into
the upstream boundary layer. However, the separation region diminishes in size, consistent
with experimental observations. At steady state 1.5% of the incoming boundary layer mass
flow is recirculated through the plenum. Porosity reduces skin friction and heat transfer while
total pressure recovery is higher due to the weaker λ shock.

The validated procedure was then employed for passive control of the 3-D interaction caused
by the double fin configuration, Figure 4a, which has been previously examined in numerous
studies. Figure 4b and the top part of Fig. 4d depict results for the uncontrolled interaction. The
complicated flow structure has been described in terms of major regimes including a separated
boundary layer, centerline vortex pair, vortex interaction and entrainment flow. The surface
oil flow has been previously validated by comparison with experimental data. Several lines
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of coalescence and divergence are evident, marked S and R respectively. The porous wall,
of porosity 40% is assumed to span the foot of the 3-D λ structure (lightly shaded region in
Fig. 4c). The porous wall essentially injests the main regimes, but the extent of the disturbed
region between the primary lines of coalescence and divergence increases (lower part of Fig. 4d).
The pressure near reattachment (not shown - see Ref. 12) is reduced as is peak heating near
the symmetry plane. However, the λ shock is broadened and the triple point moves away from
the plate, similar to the observation in 2-D control. This generally weaker interaction yields an
overall improvement in pressure recovery.

Advanced numerical approaches to couple first-principles dielectric barrier discharge models
to the full Navier-Stokes equations were also successfully developed. Subsequently, these were
employed to explore the manner in which momentum injected into the flow by the body force
influences fluid instabilities yielding a powerful lever to enhance plasma actuator effectiveness.
The simulation complexity arises from both the daunting computational requirements of 3-D
turbulent simulations at plasma time scales as well as gaps in current understanding of the
molecular processes that dominate charged particle generation and behavior. Thus, a coupled
approach, shown in Fig. 5, is the most effective. Specifically, the force field due to the device,
Fig. 5a, is obtained for a small region surrounding the device, including the dielectric region
beneath the surface (Fig. 5b). This sophisticated multi-fluid collisional plasma calculation,
obtained from Prof. S. Roy of Kettering University, has been described in Ref. 15 and others.
The force field at a sample phase angle is shown in Fig. 5c. The variation is stored at many
phase angles of excitation and transferred through rotation and scaling operations (Fig. 5d) to
the appropriate point on the wing section, usually slightly downstream of separation, Fig. 5e.
The area-weighted procedure to ensure that the integrated force and gradients are matched has
been described in Refs. 19, 24, which also describes the spatio-temporal coupling methodology.

The approach was employed, together with a highly accurate scheme, to examine numerous
aspects related to the control of a stalled flow past a wing section at a nominal Reynolds number
of 45, 000 and angle-of-attack of 15o. The baseline flow is depicted in Fig. 5f with iso-levels
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Figure 5 Coupling of first principles plasma and fluid procedures for wing-section stall
control

of instantaneous vorticity magnitude colored by the spanwise component of vorticity. A shear
layer emanates from the separation point, which occurs at approximately 2% chord. Proceeding
downstream, transition sets in and the layer loses its coherence as the three-dimensional break-
up process progresses. It has been shown previously that the absence of a spanwise breakdown
mechanism in 2-D necessitates a full 3-D analysis.

Qualitative differences between the effects of the controlled unsteadiness associated with the
radio-frequency excitation versus that due to duty cycles (encapsulating a steady phenomeno-
logical force field) have been examined. Details may be found in Ref. 24. The effect of an
actuator extending the entire span with a peak strength of 2400 (ratio of electrical to inertial
force) – similar to that employed with the phenomenological model - is shown in Fig. 5g. Tran-
sitional streamwise oriented structures are evident which persist to near the point of maximum
thickness, at which point turbulence sets in relatively rapidly. Force fluctuations evidently trig-
ger turbulence, together with an acoustic signal which cannot be represented accurately by the
steady phenomenological model. Results obtained when the actuator strength is reduced to 250
are shown in Fig. 5h. In this case, the striations observed previously do not occur. However, the
breakdown is more rapid with excitation, and the size of the separation region is considerably
reduced. The flow field obtained with the finite-span actuator (Dc = 2400) is shown in Fig. 5i.
Similar longitudenal structures are observed as for the full span case. However, at the spanwise
edges of actuation, instabilities are noted to set in very rapidly. The region of chaotic flow
spreads towards the center of the section and after about mid-chord, the flow is turbulent on
the entire span. Examination of the mean flowfield reveals the presence of a central region near
the actuator characterized by a shallow high-speed jet-like structure of high-vorticity flanked by
coherent vortical regions that entrain fluid. Diffusion of these structures is accelerated following
the onset of turbulence. The flowfield near the leading edge is consistent with the development
of a horse-shoe vortex, with a core that wraps around the actuator yielding a streamwise vortex
pair that diffuses with the onset of turbulence. Numerous other results, including comparison
with duty cycles of different inter-pulse periods have been described in Ref. 24.
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